#### Electric dipole approximation (E1)

- We have shown that for interaction of low-Z ions with visible light we may apply electric dipole (long-wave) approximation
- In this approximation transition amplitude reads as:

$$M_{ab}^{(E1)} = \int \psi_a^*(\boldsymbol{r}) \,\boldsymbol{\alpha} \, \boldsymbol{\varepsilon} \, \psi_b(\boldsymbol{r}) \, d\boldsymbol{r}$$

Evaluation of this amplitude leads us to set of <u>selection rules</u>:





e<sup>ikr</sup>

≈1

#### **Higher multipoles contributions**

Transition matrix element can be evaluated by making "multipole expansion" of the electronphoton interaction operator:

$$M_{ab} = \int \psi_a^+(\mathbf{r}) \, \boldsymbol{\alpha} \, \boldsymbol{\varepsilon} \, e^{i\mathbf{k}\mathbf{r}} \, \psi_b(\mathbf{r}) d\mathbf{r}$$





For interaction of heavy ions with energetic photons we may find that:



Which means that electric dipole approximation is not longer valid!

We have to take into account higher (non-dipole) terms!

#### Beyound the E1 approximation

#### (first comection)

• Let us consider the next term in the multipole decomposition of electron-photon interaction:

$$e^{i\boldsymbol{k}\boldsymbol{r}} = 1 + \underbrace{i\boldsymbol{k}\boldsymbol{r}}_{\boldsymbol{k}} + \frac{1}{2}(i\boldsymbol{k}\boldsymbol{r})^2 + \dots$$

And let us analyze matrix element containing this term:

$$M'_{ab} = \int \psi'_{a}(\mathbf{r}) \, \boldsymbol{\alpha} \, \boldsymbol{\varepsilon} \, (i\mathbf{k}\mathbf{r}) \, \psi_{b}(\mathbf{r}) d\mathbf{r}$$

Again, to make mathematical analysis more "clear" let us restrict ourselves now to the nonrelativistic formulation of this matrix element:

$$M'_{ab} \propto \int \psi_a^+(\mathbf{r}) \, \mathbf{p} \, \boldsymbol{\varepsilon} \left(i\mathbf{k}\mathbf{r}\right) \psi_b(\mathbf{r}) d\mathbf{r}$$

By assuming photon propagating along z-axis ( $\mathbf{k} \uparrow \uparrow O$ ), we can choose photon polarization in x-direction (remember:  $\mathbf{k} \cdot \mathbf{\varepsilon} = 0$ ).

$$M'_{ab} \propto \int \psi_a^+(\mathbf{r}) p_x z \psi_b(\mathbf{r}) d\mathbf{r}$$



# Beyound the E1 approximation

(magnetic dipole and electric guadrupole transitions)

• Let us re-write our matrix element as:

$$M'_{ab} \propto \int \psi_a^+(\mathbf{r}) p_x z \psi_b(\mathbf{r}) d\mathbf{r} = \int \psi_a^+(\mathbf{r}) (p_x z - x p_z) \psi_b(\mathbf{r}) d\mathbf{r} + \int \psi_a^+(\mathbf{r}) x p_z \psi_b(\mathbf{r}) d\mathbf{r}$$

► By using the fact that: 
$$\hat{L}_y = zp_x - xp_z$$
  
► and:  $\dot{z} = \frac{i}{\hbar} [\hat{H}_0, z]$  (in a.u.)

$$M'_{ab} \propto \int \psi_a^+(\mathbf{r}) L_y \psi_b(\mathbf{r}) d\mathbf{r} + i \omega_{ab} \int \psi_a^+(\mathbf{r}) x z \psi_b(\mathbf{r}) d\mathbf{r}$$

# Higher multipoles contributions

#### We just have found that:

$$M_{ab}^{(M1,E2)} \propto \int \psi_{a}^{+}(\mathbf{r}) L_{y} \psi_{b}(\mathbf{r}) d\mathbf{r} + i \omega_{ab} \int \psi_{a}^{+}(\mathbf{r}) x z \psi_{b}(\mathbf{r}) d\mathbf{r}$$
  
magnetic dipole (M1) term  
Proportional to magnetic moment of the ion  
Proportional to electric quadrupole

$$\hat{\mathbf{\mu}} = -\mu_0 (\hat{\mathbf{L}} + g\hat{\mathbf{S}}) / \hbar$$

moment of the ion

$$Q_{ij} = \sum_{n} q_{n} \left( 3x_{i}x_{j} - x^{2}\delta_{ij} \right)$$

deviation from spherical shape!



After some algebra, selection rules for these transitions can be found!

#### Magnetic dipole and electric quadrupole transitions (Selection rules)

• We just have found that:

$$M_{ab}^{(M\,1,E\,2)} \propto \int \psi_{a}^{+}(\boldsymbol{r}) L_{y} \psi_{b}(\boldsymbol{r}) d\boldsymbol{r} + i \omega_{ab} \int \psi_{a}^{+}(\boldsymbol{r}) x \, z \, \psi_{b}(\boldsymbol{r}) d\boldsymbol{r}$$
  
magnetic dipole (M1) term  

$$|j_{a} - j_{b}| = 0, \pm 1$$

$$|j_{a} - j_{b}| = 0, \pm 1$$

$$|j_{a} - j_{b}| = 0, \pm 1, \pm 2$$

 $\pi_a = \pi_b$ 

 $\pi_a = \pi_b$ 

 By making further multipole decomposition of the electron-photon interaction we can obtain even higher terms:

$$e^{i\mathbf{k}\mathbf{r}} = 1 + i\mathbf{k}\mathbf{r} + \frac{1}{2}(i\mathbf{k}\mathbf{r})^2 + \dots = E1 + M1 + E2 + M2 + E3 + \dots$$

# Multipole transitions

(selection rules)

| transition                  | selection rules                                                              |
|-----------------------------|------------------------------------------------------------------------------|
| Electric dipole<br>(E1)     | $\begin{vmatrix} j_a - j_b \end{vmatrix} = 0, \pm 1$ $\pi_a = -\pi_b$        |
| Magnetic<br>dipole (M1)     | $\begin{vmatrix} j_a - j_b \end{vmatrix} = 0, \pm 1$ $\pi_a = \pi_b$         |
| Electric<br>quadrupole (E2) | $\left  j_a - j_b \right  = 0, \pm 1, \pm 2$<br>$\pi_a = \pi_b$              |
| Magnetic<br>quadrupole (M2) | $\begin{vmatrix} j_a - j_b \end{vmatrix} = 0, \pm 1, \pm 2$ $\pi_a = -\pi_b$ |

(for all transitions  $0 \rightarrow 0$  is forbidden and triangle rule  $|j_a - j_b| \le L \le j_a + j_b$  should be satisfied)



Higher multipoles become more pronounced for heavy ions (large nuclear charges)!

(Remind yourself our discussion on value of kr)!

#### Z-scaling of multipole decay rates



- For low-Z higher multipole transition are orders of magnitude smaller than the leading electric dipole (E1) term.
- However, higher terms are enhanced with Z faster than E1 due to the increasing role of relativistic effects.

# Atomic photoionization

• For the case of the photoabsorption:

$$c_b^{(1)}(t) = \frac{ce}{i\hbar} \int_{\Delta_{\omega}} d\omega A_0(\omega) e^{i\delta_{\omega}} \left\langle \psi_b \right| \alpha \varepsilon e^{ikr} \left| \psi_a \right\rangle_0^t dt' e^{i(E_b - E_a - \hbar\omega)t'/\hbar}$$

We can get total cross section as:

$$d\sigma_{ab} = C \frac{1}{\omega_{ba}} \left| \left\langle \psi_b \right| \alpha \varepsilon e^{ikr} \left| \psi_a \right\rangle \right|^2 \rho_b \, d\Omega$$





# Atomic photoionization

• For the case of the photoabsorption:

$$c_b^{(1)}(t) = \frac{ce}{i\hbar} \int_{\Delta_{\omega}} d\omega A_0(\omega) e^{i\delta_{\omega}} \left\langle \psi_b \right| \alpha \varepsilon e^{ikr} \left| \psi_a \right\rangle_0^t dt' e^{i(E_b - E_a - \hbar\omega)t'/\hbar}$$

We can get total cross section as:

$$d\sigma_{ab} = C \frac{1}{\omega_{ba}} \left| \left\langle \psi_b \right| \alpha \varepsilon e^{ikr} \left| \psi_a \right\rangle \right|^2 \rho_b \, d\Omega$$



• Bound-free transition matrix element is:  

$$M_{ab} = \left\langle \psi_{b} \middle| \alpha \varepsilon e^{ikr} \middle| \psi_{a} \right\rangle \equiv \int \psi_{b}^{+}(r) \alpha \varepsilon e^{ikr} \psi_{a}(r) dr$$
bound wave function

#### K-shell atomic photoionization

(non-relativistic framework)

We shall consider evaluation of the bound-free matrix element for the moment in the non-relativistic framework:

$$M_{ab} = \int \psi_b^+(\mathbf{r}) \, \boldsymbol{\varepsilon} \, e^{i\mathbf{k}\mathbf{r}} \, \nabla \, \psi_{1s}(\mathbf{r}) d\mathbf{r}$$

 And let us make an approximation in which continuum electron will be decsribed by the plane wave! (We neglected the interaction of a nucleus with electron in continuum):

$$M_{ab} = C \cdot \int e^{-ik_b r} \varepsilon e^{ikr} \nabla \psi_{1s}(r) dr$$

Angular differential photoionization cross section

$$\frac{d\sigma}{d\Omega} = C \cdot \left| M_{ab} \right|^2 \approx C \cdot \sin^2 \theta \cos^2 \varphi$$



# K-shell atomic photoionization

(non-relativistic framework)

• Simple physical interpretation can be obtained for the derived cross section:



 Obviously: in non-relativistic electric-dipole (E1) approximation electron should be emitted along the electric field vector = polarization vector of EM wave.



$$\left.\frac{d\sigma}{d\Omega}\right|_{unp} \approx C \cdot \sin^2 \theta$$

# Summary of Effects with light and matter

non-realivistic framework

| Effect                          | Initial wavefunction  | Final wavefunction |
|---------------------------------|-----------------------|--------------------|
| Photoabsorption<br>(Excitation) | bound state           | bound state        |
| Photoionization                 | bound state           | continuous state   |
| Radiative electron<br>capture   | bound                 | bound state        |
| Radiative recombination         | continuous state      | bound state        |
| bremsstrahlung                  | continuous state      | continuous state   |
| pair production                 | neg. continuous state | bound state        |