
Electric dipole approximation (E1)

We have shown that for interaction of low-Z ions with visible light we

may apply electric dipole (long-wave) approximation

In this approximation transition amplitude reads as:
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E1 transitions

Evaluation of this amplitude leads us to

set of selection rules:
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Higher multipoles contributions
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Transition matrix element can be evaluated by making “multipole expansion” of the electron-

photon interaction operator:
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electric dipole term

For interaction of heavy ions with

energetic photons we may find that:
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Which means that electric dipole

approximation is not longer valid!

1≈kr

X-rays:

γ-rays:

1810 −≈ cmk

1910 −> cmk

We have to take into account higher 

(non-dipole) terms!



Beyound the E1 approximation
(first correction)

Let us consider the next term in the multipole decomposition of electron-photon interaction:

And let us analyze matrix element containing this term:

Again, to make mathematical analysis more “clear” let us restrict ourselves now to the non-
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Again, to make mathematical analysis more “clear” let us restrict ourselves now to the non-

relativistic formulation of this matrix element:
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By assuming photon propagating along z-axis (               ), we can

choose photon polarization in x-direction (remember:               ).
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Beyound the E1 approximation
(magnetic dipole and electric quadrupole transitions)

Let us re-write our matrix element as:

By using the fact that:
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By using the fact that:

and:
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Higher multipoles contributions
(M1 and E2 terms)

We just have found that:
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magnetic dipole (M1) term

Proportional to magnetic moment of the ion

electric quadrupole (E2) term

Proportional to electric quadrupole 

moment of the ion
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deviation from 

spherical shape!

After some algebra, selection rules for these transitions can be found!



Magnetic dipole and electric quadrupole transitions
(Selection rules)

We just have found that:
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magnetic dipole (M1) term electric quadrupole (E2) term
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By making further multipole decomposition of the electron-photon interaction we can obtain even 

higher terms:
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Multipole transitions
(selection rules)
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transition selection rules

Electric dipole 
(E1)

Magnetic
dipole (M1)
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(for all transitions               is forbidden and triangle rule

should be satisfied)

00 →
baba jjLjj +≤≤−

1s1/2

2s1/2
2p1/2Electric

quadrupole (E2)

Magnetic
quadrupole (M2)

2,1,0 ±±=− ba jj

ba ππ =

2,1,0 ±±=− ba jj

ba ππ −=
Higher multipoles become more pronounced for heavy 

ions (large nuclear charges)!

(Remind yourself our discussion on value of kr)!



Z-scaling of multipole decay rates
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For low-Z higher multipole transition are orders of magnitude smaller than the leading 

electric dipole (E1) term.

However, higher terms are enhanced with Z faster than E1 due to the increasing role of 

relativistic effects.



For the case of the photoabsorption:

We can get total cross section as: 

Atomic photoionization
(theory background)

t’=0         t’=t

laser pulse

We assume that laser pulse is 

independent on time except for 

being “switched on” at t=0.
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being “switched on” at t=0.



For the case of the photoabsorption:
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Bound-free transition matrix element is:
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being “switched on” at t=0.
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K-shell atomic photoionization
(non-relativistic framework)

We shall consider evaluation of the bound-free matrix element for the moment in the non-

relativistic framework:

And let us make an approximation in which continuum electron will be decsribed by the plane

wave! (We neglected the interaction of a nucleus with electron in continuum):
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K-shell atomic photoionization
(non-relativistic framework)

Simple physical interpretation can be obtained for the derived cross section:
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Obviously: in non-relativistic electric-dipole (E1) approximation electron should be

emitted along the electric field vector = polarization vector of EM wave.

For the case of unpolarized light: θσ 2sin⋅≈
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Summary of Effects with light and matter
(non-relativistic framework)

Effect Initial wavefunction Final wavefunction

Photoabsorption

(Excitation)

bound state bound state

Photoionization bound state continuous state

Radiative electron

capture

bound bound state
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Radiative

recombination

continuous state bound state

bremsstrahlung continuous state continuous state

pair production neg. continuous state bound state


