Electric dipole approximation (E1)

- We have shown that for interaction of low-Z ions with visible light we may apply electric dipole (long-wave) approximation

$$
e^{i k r} \approx 1
$$

- In this approximation transition amplitude reads as:

$$
M_{a b}^{(E 1)}=\int \psi_{a}^{*}(\boldsymbol{r}) \boldsymbol{\alpha} \boldsymbol{\varepsilon} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

- Evaluation of this amplitude leads us to set of selection rules:

$$
\begin{gathered}
\left|j_{a}-j_{b}\right|=0, \pm 1 \\
\pi_{a}=-\pi_{b}
\end{gathered}
$$

Higher multipoles contributions

- Transition matrix element can be evaluated by making "multipole expansion" of the electronphoton interaction operator:

$$
M_{a b}=\int \psi_{a}^{+}(\boldsymbol{r}) \alpha \varepsilon e^{i k r} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

$$
\begin{array}{ll}
\text { X-rays: } & k \approx 10^{8} \mathrm{~cm}^{-1} \\
\gamma-\text {-rays: } & k>10^{9} \mathrm{~cm}^{-1}
\end{array}
$$

- For interaction of heavy ions with energetic photons we may find that:

$$
k r \approx 1
$$

- Which means that electric dipole approximation is not longer valid!

We have to take into account higher
(non-dipole) terms!

Beyound the E1 approximation

- Let us consider the next term in the multipole decomposition of electron-photon interaction:

$$
e^{i k r}=1+\underbrace{i \boldsymbol{k r}}+\frac{1}{2}(i \boldsymbol{k r})^{2}+\ldots
$$

- And let us analyze matrix element containing this term:

$$
M_{a b}^{\prime}=\int \psi_{a}^{+}(\boldsymbol{r}) \boldsymbol{\alpha} \boldsymbol{\varepsilon}(i \boldsymbol{k} \boldsymbol{r}) \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

* Again, to make mathematical analysis more "clear" let us restrict ourselves now to the nonrelativistic formulation of this matrix element:

$$
M_{a b}^{\prime} \propto \int \psi_{a}^{+}(\boldsymbol{r}) \boldsymbol{p} \boldsymbol{\varepsilon}(i \boldsymbol{k r}) \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

By assuming photon propagating along z-axis $(\boldsymbol{k} \uparrow \uparrow O)$, we can choose photon polarization in x-direction (remember: $\boldsymbol{k} \cdot \boldsymbol{\varepsilon}=0$).

$$
\square M_{a b}^{\prime} \propto \int \psi_{a}^{+}(\boldsymbol{r}) p_{x} z \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

Beyound the E1 approximation

- Let us re-write our matrix element as:

$$
\begin{aligned}
M_{a b}^{\prime} \propto \int \psi_{a}^{+}(\boldsymbol{r}) p_{x} z \psi_{b}(\boldsymbol{r}) d \boldsymbol{r} & =\int \psi_{a}^{+}(\boldsymbol{r})\left(p_{x} z-x p_{z}\right) \psi_{b}(\boldsymbol{r}) d \boldsymbol{r} \\
& +\int \psi_{a}^{+}(\boldsymbol{r}) x p_{z} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
\end{aligned}
$$

- By using the fact that: $\quad \hat{L}_{y}=z p_{x}-x p_{z}$
- and: $\dot{z}=\frac{i}{\hbar}\left[\hat{H}_{0}, z\right]$

$$
\sqrt{\eta} \text { (in a.u.) }
$$

$M_{a b}^{\prime} \propto \int \psi_{a}^{+}(\boldsymbol{r}) L_{y} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}+i \omega_{a b} \int \psi_{a}^{+}(\boldsymbol{r}) x z \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}$

Higher multipoles contributions

- We just have found that:

$$
M_{a b}^{(M 1, E 2)} \propto \int \psi_{a}^{+}(\boldsymbol{r}) L_{y} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}+i \omega_{a b} \int \psi_{a}^{+}(\boldsymbol{r}) x z \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}
$$

magnetic dipole (M1) term

Proportional to magnetic moment of the ion
$\hat{\boldsymbol{\mu}}=-\mu_{0}(\hat{\mathbf{L}}+g \hat{\mathbf{S}}) / \hbar$
electric quadrupole (E2) term

Proportional to electric quadrupole moment of the ion

$$
Q_{i j}=\sum_{n} q_{n}\left(3 x_{i} x_{j}-x^{2} \delta_{i j}\right)
$$

deviation from spherical shape!

\longrightarrow
After some algebra, selection rules for these transitions can be found!

Magnetic dipole and electric quadrupole transitions

(Selection rules)

- We just have found that:

$$
\begin{array}{r}
M_{a b}^{(M 1, E 2)} \propto \underbrace{\int \psi_{a}^{+}(\boldsymbol{r}) L_{y} \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}}_{\text {magnetic dipole (M1) term }}+i \omega_{a b}^{\int \psi_{a}^{+}(\boldsymbol{r}) x z \psi_{b}(\boldsymbol{r}) d \boldsymbol{r}} \\
\operatorname{celectric~quadrupole~(E2)~term~}_{\left|j_{a}-j_{b}\right|=0, \pm 1}^{\pi_{a}=\pi_{b}}, \\
\left\lvert\, \begin{array}{c}
\left|j_{a}-j_{b}\right|=0, \pm 1, \pm 2 \\
\pi_{a}=\pi_{b}
\end{array}\right.
\end{array}
$$

- By making further multipole decomposition of the electron-photon interaction we can obtain even higher terms:

$$
e^{i k r}=1+i k r+\frac{1}{2}(i k r)^{2}+\ldots=E 1+M 1+E 2+M 2+E 3+\ldots
$$

Multipole transitions

(selection rules)

transition	selection rules
Electric dipole (E1)	$\left\|j_{a}-j_{b}\right\|=0, \pm 1$ $\pi_{a}=-\pi_{b}$
Magnetic dipole (M1)	$\left\|j_{a}-j_{b}\right\|=0, \pm 1$ $\pi_{a}=\pi_{b}$
Electric quadrupole (E2)	$\left\|j_{a}-j_{b}\right\|=0, \pm 1, \pm 2$ $\pi_{a}=\pi_{b}$
Magnetic quadrupole (M2)	$\left\|j_{a}-j_{b}\right\|=0, \pm 1, \pm 2$ $\pi_{a}=-\pi_{b}$

(for all transitions $0 \rightarrow 0$ is forbidden and triangle rule $\left|j_{a}-j_{b}\right| \leq L \leq j_{a}+j_{b}$ should be satisfied)

Higher multipoles become more pronounced for heavy ions (large nuclear charges)!
(Remind yourself our discussion on value of $k r$)!

Z-scaling of multipole decay rates

- For low-Z higher multipole transition are orders of magnitude smaller than the leading electric dipole (E1) term.
- However, higher terms are enhanced with Z faster than E1 due to the increasing role of relativistic effects.

Atomic photoionization

- For the case of the photoabsorption:

$$
c_{b}^{(1)}(t)=\frac{c e}{i \hbar} \int_{\Delta_{\omega}} d \omega A_{0}(\omega) \mathrm{e}^{i \delta_{\omega}}\left\langle\psi_{b}\right| \boldsymbol{\alpha} \varepsilon e^{i k r}\left|\psi_{a}\right\rangle \int_{0}^{t} d t^{\prime} \mathrm{e}^{i\left(E_{b}-E_{a}-\hbar \omega\right) t^{\prime} \hbar \hbar}
$$

- We can get total cross section as:

$$
\left.d \sigma_{a b}=C \frac{1}{\omega_{b a}}\left|\left\langle\psi_{b}\right| \boldsymbol{\alpha} \varepsilon e^{i k r}\right| \psi_{a}\right\rangle\left.\right|^{2} \rho_{b} d \Omega
$$

We assume that laser pulse is independent on time except for being "switched on" at $\mathrm{t}=0$.

Atomic photoionization

- For the case of the photoabsorption:

$$
c_{b}^{(1)}(t)=\frac{c e}{i \hbar} \int_{\Delta_{\omega}} d \omega A_{0}(\omega) \mathrm{e}^{i \delta_{\omega}}\left\langle\psi_{b}\right| \boldsymbol{\alpha} \varepsilon e^{i k r}\left|\psi_{a}\right\rangle \int_{0}^{t} d t^{\prime} \mathrm{e}^{i\left(E_{b}-E_{a}-\hbar \omega\right) t^{\prime} \hbar \hbar}
$$

- We can get total cross section as:

$$
\left.d \sigma_{a b}=C \frac{1}{\omega_{b a}}\left|\left\langle\psi_{b}\right| \alpha \varepsilon e^{i k r}\right| \psi_{a}\right\rangle\left.\right|^{2} \rho_{b} d \Omega
$$

We assume that laser pulse is independent on time except for being "switched on" at $\mathrm{t}=0$.

- Bound-free transition matrix element is:

$$
M_{a b}=\left\langle\psi_{b}\right| \boldsymbol{\alpha} \varepsilon e^{i \boldsymbol{k} \boldsymbol{r}}\left|\psi_{a}\right\rangle \equiv \int_{\boldsymbol{J}} \psi_{b}^{+}(\boldsymbol{r}) \boldsymbol{\alpha} \varepsilon e^{i \boldsymbol{k}} \psi_{a}(\boldsymbol{r}) d \boldsymbol{r}
$$

K-shell atomic photoionization

- We shall consider evaluation of the bound-free matrix element for the moment in the nonrelativistic framework:

$$
M_{a b}=\int \psi_{b}^{+}(\boldsymbol{r}) \varepsilon e^{i k r} \nabla \psi_{1 s}(\boldsymbol{r}) d \boldsymbol{r}
$$

- And let us make an approximation in which continuum electron will be decsribed by the plane wave! (We neglected the interaction of a nucleus with electron in continuum):

$$
M_{a b}=C \cdot \int e^{-i \boldsymbol{k}_{b} r} \varepsilon e^{i \boldsymbol{k} r} \nabla \psi_{1 s}(\boldsymbol{r}) d \boldsymbol{r}
$$

Angular differential photoionization cross section

$$
\frac{d \sigma}{d \Omega}=C \cdot\left|M_{a b}\right|^{2} \approx C \cdot \sin ^{2} \theta \cos ^{2} \varphi
$$

K-shell atomic photoionization

- Simple physical interpretation can be obtained for the derived cross section:

$$
\frac{d \sigma}{d \Omega}=C \cdot\left|M_{a b}\right|^{2} \approx C \cdot \sin ^{2} \theta \cos ^{2} \varphi
$$

- Obviously: in non-relativistic electric-dipole (E1) approximation electron should be emitted along the electric field vector = polarization vector of EM wave.

For the case of unpolarized light:

$$
\left.\frac{d \sigma}{d \Omega}\right|_{u n p} \approx C \cdot \sin ^{2} \theta
$$

Summary of Effects with light and matter

Effect	Initial wavefunction	Final wavefunction
Photoabsorption (Excitation)	bound state	bound state
Photoionization	bound state	continuous state
Radiative electron capture	bound	bound state
Radiative recombination bremsstrahlung	continuous state	bound state
pair production	neg. continuous state	bound state

